Evaluation and Application of the Gaussian-Log Gaussian Spatial Model for Robust Bayesian Prediction of Tehran Air Pollution Data

نویسندگان

چکیده مقاله:

Air pollution is one of the major problems of Tehran metropolis. Regarding the fact that Tehran is surrounded by Alborz Mountains from three sides, the pollution due to the cars traffic and other polluting means causes the pollutants to be trapped in the city and have no exit without appropriate wind guff. Carbon monoxide (CO) is one of the most important sources of pollution in Tehran air. The concentration of carbon monoxide increases remarkably at the city regions with heavy traffic. Due to the negative effects of this gas on breathing metabolism and people brain activities, the modeling and classifying of the CO amounts in order to control and reduce it, is very noteworthy. For this reason Rivaz et al. (2007) using a Gaussian model presented the space-time analysis of the Tehran air pollution based on the observations from 11 stations for measuring the air pollution. Although assuming the Gaussian observations causes the simplicity of the inferences such as prediction, but often this assumption is not true in reality. One of the outrage factors from normality assumption is the outlying observations. For example in Tehran air pollution issue, the Sorkhe Hesar station indicates very low pollution compare to the other stations due to locating in a forest region. Therefore this observation could be considered as an outlying observation. Whereas the presence of such data causes the thickening of distribution tails and increasing the kurtosis coefficient, therefore in this situation normal distribution which has a narrower tails can not be used. Generally identifying and modeling the outlying observations is one of the main issues that statistician have been faced with since long time ago and many different solutions have been presented so far to overcome the problems arising from such observations. Amongst all these solutions, robust methods can be mentioned (Militino et al., 2006, and Cerioli and Riani, 1999). In these methods with normality observations assumption, the aim is to present a robust analysis. But there might be an outlying observation which belongs to the same pattern of other data. In this case applying those distributions with thicker tails compare to the normal distribution could be useful. This matter was evaluated by Jeffreys (1961) for the first time. Maronna (1976) and Lang et al. (1989) evaluated the verifying maximum likelihood estimation for the model in which the errors imitating the student-t distribution. West (1984) also used the scale mixture of normal distribution families for modeling the outlying observations. Fernandez and Steel (2000) also evaluated the existence of posterior distribution and its moments by introducing the improper prior distributions for West model. In the field of geostatistical data, Palacios and Steel (2006) introduced the extended Gaussian model as below by considering the errors distribution from the scale mixture of normal distributions family....(to countinue here)

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model

Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...

متن کامل

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

Spatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data

‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...

متن کامل

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

Modified signed log-likelihood test for the coefficient of variation of an inverse Gaussian population

In this paper, we consider the problem of two sided hypothesis testing for the parameter of coefficient of variation of an inverse Gaussian population. An approach used here is the modified signed log-likelihood ratio (MSLR) method which is the modification of traditional signed log-likelihood ratio test. Previous works show that this proposed method has third-order accuracy whereas the traditi...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 1

صفحات  1- 24

تاریخ انتشار 2009-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023